

Overview of the MAGIC initiative for GHG and future plans

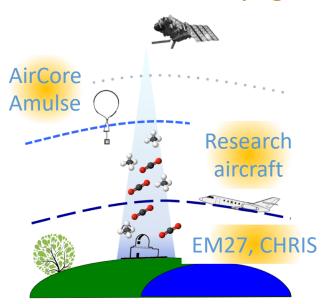
<u>Cyril Crevoisier</u>, Caroline Bès, Lilian Joly, Yao Té, Michel Ramonet, Hervé Hebin, Valéry Catoire, Andreas Fix, Nicolas Cézard, Aurélien Bourdon and the whole MAGIC team

http://magic.aeris-data.fr

cyril.crevoisier@lmd.ipsl.fr

Monitoring of Atmospheric composition and Greenhouse gases through multi-Instrument Campaigns

The MAGIC initiative was launched in 2017 by CNRS and CNES.


Two main objectives:

- To better understand atmospheric distribution and emissions of CH₄, CO₂ and related variables
- To validate current space missions (e.g. OCO-2, GOSAT-2, S5P, IASI) and prepare future ones (e.g. Merlin, MicroCarb, IASI-NG)

How?

- By organizing annual campaigns, network measurements and building numerical tools.
- By combining ground-based, airborne (aircraft, balloon) and satellite observations.
- By testing satellite airborne demonstrators.

Multi-instrument campaigns

Network for vertical profiling

Consortium for total column measurements

See Y. Té's poster Session 2.2b

Already 3 campaigns: May 2018, June 2019, September 2020

MAGIC-CoMet 2018

Primary objectives of these past campaigns:

- 1. Comparison and validation of various instrumental techniques.
- 2. Validation of 4 space missions: IASI-A/B/C, OCO-2, Sentinel-5P, GOSAT-1/2

Location: France around 3 stations: Aire-sur-l'Adour (ASA), Trainou (TRN, ICOS/TCCON), Puy-de-Dôme (CO-PDD)

MAGIC 2019

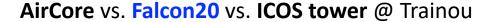
MAGIC 2020

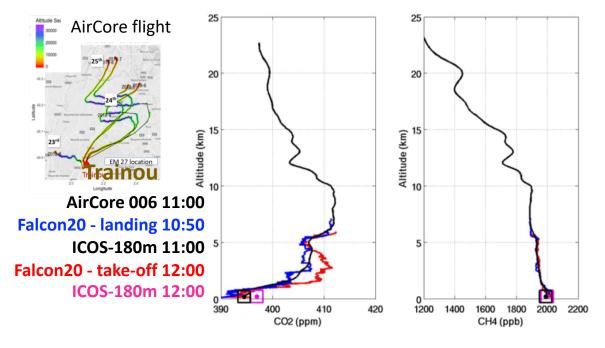
©CNES/A. Hollier, 2018 **SAFIRE Falcon20**

- **Picarros**
- **SPIRIT**
- Dropsondes
- **Particules**
- \rightarrow 0-11 km profiles of CO₂, CH₄, CO, H₂O, T, wind

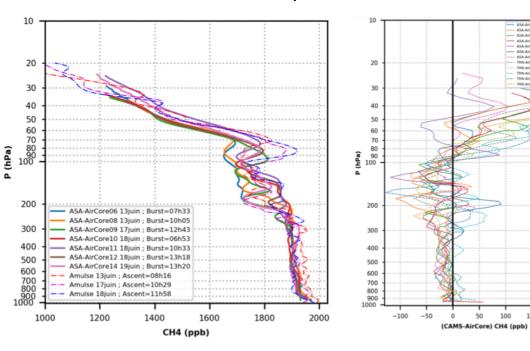
©Crevoisier, 2020

EM27/SUN CHRIS (TIR-SWIR)


cnes

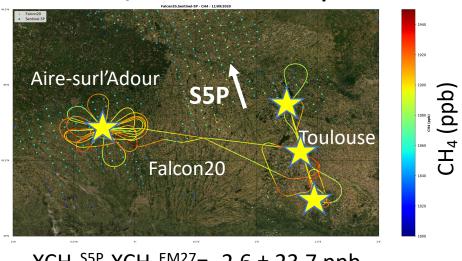

 \rightarrow Weighted columns of CO₂, CH₄, CO, etc.

Results 1. Comparison of atmospheric profiles

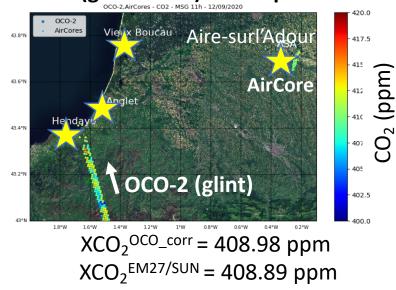


CAMS - AirCore CH₄

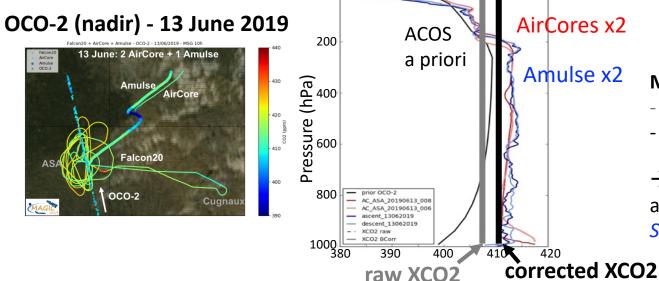
AirCore vs. Amulse CH₄


- Excellent agreement between AirCore, Amulse and Falcon20 throughout the troposphere.
 - \rightarrow Over the whole MAGIC flights, CH₄ 'column' difference AirCore/Amulse Falcon20 is : -1.58 ± 6.94 ppb
- Small discrepancies between AirCore and Amulse in stratospheric structures.
- Both AirCore and Amulse highlight overestimation of stratospheric CH₄ by several atmospheric transport models.

Results 2. Validation of various space missions: OCO-2, Sentinel-5P, GOSAT, IASI,



TROPOMI/Sentinel-5P - 11 Sept. 2020



 XCH_4^{S5P} - XCH_4^{EM27} = -2.6 ± 23.7 ppb

OCO-2 (glint mode) - 12 Sept. 2020

vs.
AirCore/
Amulse

Mean difference OCO-2 - AirCore/Amulse XCO2:

- Raw XCO2: -3.10 ± 1.41 ppm
- Corr. XCO2: -0.39 ± 0.80 ppm
- → A database to evaluate impact of spectroscopy and CIA modelling on retrieved XCO2.

See M. Dogniaux's poster Session 1.5a

MAGIC2021: Towards high latitudes

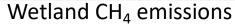
Specific objectives:

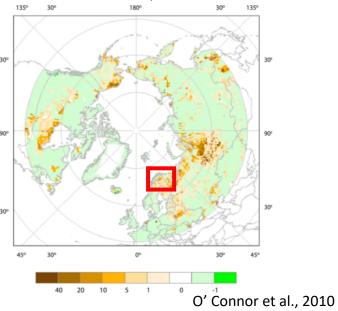
- CH₄ and CO₂ emissions at high-latitude (~68°N)
 - High northern latitudes are a major yet poorly known contributor to the global methane budget.
 - Natural and anthropogenic emissions
- Validation of space missions in this difficult environment.
 - Passive space missions: difficulties due to specific obs conditions (high solar zenith angle, surface and thermodynamics conditions) and lack of validation.
 - Active space missions: an opportunity to bring new high-quality measurements.

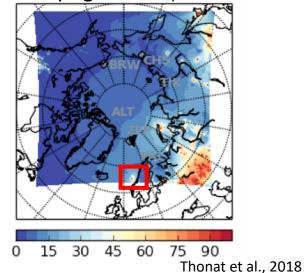
Date and location:

- 14-27 August 2021
- Northern Scandinavia; base of operation: Esrange station (Sweeden).

Team:



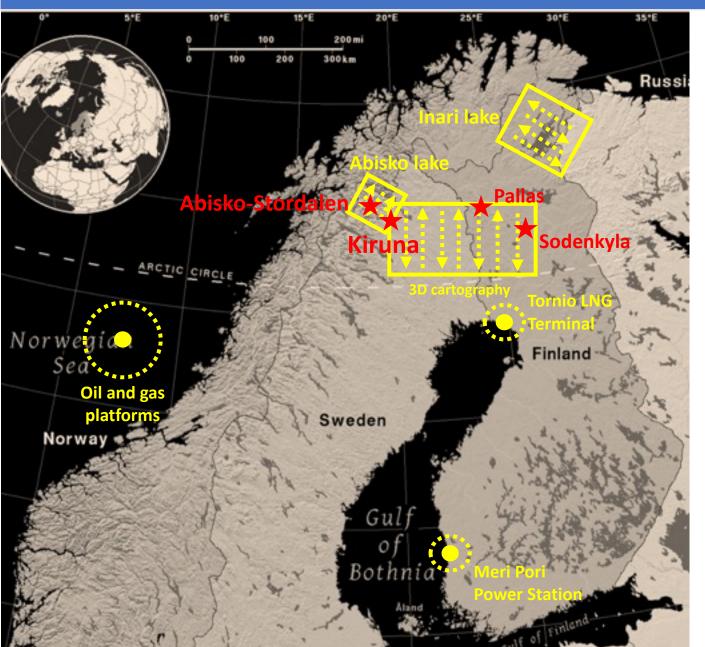

Funding: CNES, CNRS, ESA, DLR



Anthropogenic CH₄ emissions

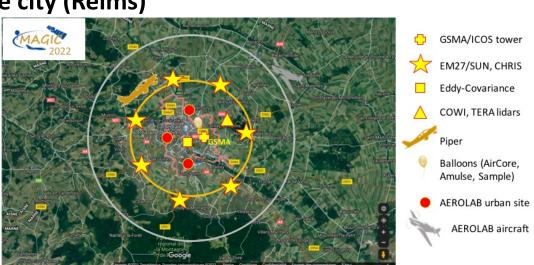
MAGIC2021: List of instruments

Vectors			Instruments		Team	Observation
Balloons	Weather balloons (BLD) @Esrange		AirCore-light	5	LMD	0-30 km profiles (CO ₂ , CH ₄ , CO, N ₂ O, T, H ₂ O, wind)
			Amulse	5	GSMA	0-30 km profiles (CO ₂ , CH ₄ , H ₂ O, T)
	W. balloons @ Sodenkylä		AirCore	-	FMI/RUG	0-30 km profiles (CO ₂ , CH ₄ , CO, T, H ₂ O, wind)
	Stratospheric Balloons (BSO) SUPER CLIMAT @ Esrange		AirCore-HR	1	LMD	0-30 km profiles (CO ₂ , CH ₄ , CO, T, H ₂ O, wind + <i>C isotopes, N₂O</i>)
			AirCore-light	2	LMD	
			Amulse	1	GSMA	0-30 km profiles (CO ₂ , CH ₄ , H ₂ O, T)
			SAMPLE	1	GSMA	0-30 km profiles at a few points (CO ₂ , CH ₄ , H ₂ O, T)
			SPECIES	1	LPC2E	0-30 km profiles of many trace gases at ppt level
Ground	FTS		CHRIS	1	LOA	Weighted columns XCO ₂ , XCH ₄ , XCO, etc.
			EM27/SUN	5-6	CNESx1, GSMAx1, LERMAx1, FMIx1, KITx1, UoLx1	
	In-situ		Picarro	3	LMDx2, LSCEx1	In-situ concentration of CO ₂ , CH ₄ , CO
Aircrafts	SAFIRE ATR42	In-situ	Picarro	2	SAFIREx1, LSCEx1	In-situ concentration of CO ₂ , CH ₄ , CO
			SPIRIT	1	LPC2E	In-situ concentration of N ₂ O, CH ₄ , CO
		Lidars	CHARM-F	1	DLR	Weighted columns XCO ₂ , XCH ₄
			LIVE	1	ONERA-DOTA	Wind profile
	DLR Cessna In-situ		Aerodyne Dual QCLS		DLR	In-situ concentration of CO ₂ , CH ₄ , CO
			MetPod		DLR	T, H₂O, 3D-wind
			Flask sampler		DLR	CH₄ isotopes
	Twin Otter		HyTES		NASA/JPL	CH ₄ , surface
			SPECIM		KCL	



MAGIC2021: Measurement scenarios

- Natural emissions:
- Abisko lake.
- Inari lake.
- Region between Kiruna and Sodankylä in coordination with CNES KLIMAT Stratospheric balloon flight from Kiruna
- Anthropogenic emissions:
- Oil and gas platforms in the Norwegian Sea.
- Tornio LNG Terminal.
- Meri Pori Power station.
- Validation of TROPOMI/Sentinel-5P, OCO-2, IASI/Metop-A/B/C


MAGIC: past, present and future

- Conclusions on MAGIC 2018, 2019, 2020
 - Evaluation of the merits of several instruments 'measuring' GHG.
 - Successful deployment of portable EM27/SUN and CHRIS to validate various missions on a day-to-day basis: OCO-2 (XCO2), TROPOMI (XCH4), GOSAT-1/2 (XCO2/XCH4) and IASI (MT-CH4).
 - Contribution to the validation of IASI during Metop-C commissioning: Temperature, humidity, trace gases.
 - Some comparisons with atmospheric transport models ... to be continued (new partners welcome!).
- MAGIC2021: Northern Scandinavia.
 - 14-27 August 2021.
 - So far everything looks good!
- MAGIC2022: Anthropogenic emissions around a mid-size city (Reims)
- Beyond:
 - 2023: MicroCarb Cal/Val
 - 2024: IASI-NG cal/val
 - >2023: Tropics

Stay tune for more MAGIC news!

https://magic.aeris-data.fr

